Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
10 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How much can one learn a partial differential equation from its solution? (2204.04602v2)

Published 10 Apr 2022 in math.NA, cs.NA, and math.AP

Abstract: In this work we study the problem about learning a partial differential equation (PDE) from its solution data. PDEs of various types are used as examples to illustrate how much the solution data can reveal the PDE operator depending on the underlying operator and initial data. A data driven and data adaptive approach based on local regression and global consistency is proposed for stable PDE identification. Numerical experiments are provided to verify our analysis and demonstrate the performance of the proposed algorithms.

Citations (6)

Summary

We haven't generated a summary for this paper yet.