Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Purely Tactile In-Hand Manipulation with a Torque-Controlled Hand (2204.03698v2)

Published 7 Apr 2022 in cs.RO

Abstract: We show that a purely tactile dextrous in-hand manipulation task with continuous regrasping, requiring permanent force closure, can be learned from scratch and executed robustly on a torque-controlled humanoid robotic hand. The task is rotating a cube without dropping it, but in contrast to OpenAI's seminal cube manipulation task, the palm faces downwards and no cameras but only the hand's position and torque sensing are used. Although the task seems simple, it combines for the first time all the challenges in execution as well as learning that are important for using in-hand manipulation in real-world applications. We efficiently train in a precisely modeled and identified rigid body simulation with off-policy deep reinforcement learning, significantly sped up by a domain adapted curriculum, leading to a moderate 600 CPU hours of training time. The resulting policy is robustly transferred to the real humanoid DLR Hand-II, e.g., reaching more than 46 full 2${\pi}$ rotations of the cube in a single run and allowing for disturbances like different cube sizes, hand orientation, or pulling a finger.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Leon Sievers (7 papers)
  2. Johannes Pitz (6 papers)
  3. Berthold Bäuml (14 papers)
Citations (33)

Summary

We haven't generated a summary for this paper yet.