Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Marrying Fairness and Explainability in Supervised Learning (2204.02947v3)

Published 6 Apr 2022 in cs.LG and cs.CY

Abstract: Machine learning algorithms that aid human decision-making may inadvertently discriminate against certain protected groups. We formalize direct discrimination as a direct causal effect of the protected attributes on the decisions, while induced discrimination as a change in the causal influence of non-protected features associated with the protected attributes. The measurements of marginal direct effect (MDE) and SHapley Additive exPlanations (SHAP) reveal that state-of-the-art fair learning methods can induce discrimination via association or reverse discrimination in synthetic and real-world datasets. To inhibit discrimination in algorithmic systems, we propose to nullify the influence of the protected attribute on the output of the system, while preserving the influence of remaining features. We introduce and study post-processing methods achieving such objectives, finding that they yield relatively high model accuracy, prevent direct discrimination, and diminishes various disparity measures, e.g., demographic disparity.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Przemyslaw Grabowicz (3 papers)
  2. Nicholas Perello (5 papers)
  3. Aarshee Mishra (3 papers)
Citations (34)