Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SE(3)-Equivariant Attention Networks for Shape Reconstruction in Function Space (2204.02394v2)

Published 5 Apr 2022 in cs.CV and cs.LG

Abstract: We propose a method for 3D shape reconstruction from unoriented point clouds. Our method consists of a novel SE(3)-equivariant coordinate-based network (TF-ONet), that parametrizes the occupancy field of the shape and respects the inherent symmetries of the problem. In contrast to previous shape reconstruction methods that align the input to a regular grid, we operate directly on the irregular point cloud. Our architecture leverages equivariant attention layers that operate on local tokens. This mechanism enables local shape modelling, a crucial property for scalability to large scenes. Given an unoriented, sparse, noisy point cloud as input, we produce equivariant features for each point. These serve as keys and values for the subsequent equivariant cross-attention blocks that parametrize the occupancy field. By querying an arbitrary point in space, we predict its occupancy score. We show that our method outperforms previous SO(3)-equivariant methods, as well as non-equivariant methods trained on SO(3)-augmented datasets. More importantly, local modelling together with SE(3)-equivariance create an ideal setting for SE(3) scene reconstruction. We show that by training only on single, aligned objects and without any pre-segmentation, we can reconstruct novel scenes containing arbitrarily many objects in random poses without any performance loss.

Citations (27)

Summary

We haven't generated a summary for this paper yet.