Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Image: A precious image based deep learning method for online malware detection in IoT Environment (2204.01690v1)

Published 4 Apr 2022 in cs.CR and cs.LG

Abstract: The volume of malware and the number of attacks in IoT devices are rising everyday, which encourages security professionals to continually enhance their malware analysis tools. Researchers in the field of cyber security have extensively explored the usage of sophisticated analytics and the efficiency of malware detection. With the introduction of new malware kinds and attack routes, security experts confront considerable challenges in developing efficient malware detection and analysis solutions. In this paper, a different view of malware analysis is considered and the risk level of each sample feature is computed, and based on that the risk level of that sample is calculated. In this way, a criterion is introduced that is used together with accuracy and FPR criteria for malware analysis in IoT environment. In this paper, three malware detection methods based on visualization techniques called the clustering approach, the probabilistic approach, and the deep learning approach are proposed. Then, in addition to the usual machine learning criteria namely accuracy and FPR, a proposed criterion based on the risk of samples has also been used for comparison, with the results showing that the deep learning approach performed better in detecting malware

Citations (6)

Summary

We haven't generated a summary for this paper yet.