Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Analysis of Semantically-Aligned Speech-Text Embeddings (2204.01235v2)

Published 4 Apr 2022 in cs.CL, cs.LG, and eess.AS

Abstract: Embeddings play an important role in end-to-end solutions for multi-modal language processing problems. Although there has been some effort to understand the properties of single-modality embedding spaces, particularly that of text, their cross-modal counterparts are less understood. In this work, we study some intrinsic properties of a joint speech-text embedding space, constructed by minimizing the distance between paired utterance and transcription inputs in a teacher-student model setup, that are informative for several prominent use cases. We found that incorporating automatic speech recognition through both pretraining and multitask scenarios aid semantic alignment significantly, resulting in more tightly coupled embeddings. To analyse cross-modal embeddings we utilise a quantitative retrieval accuracy metric for semantic alignment, zero-shot classification for generalisability, and probing of the encoders to observe the extent of knowledge transfer from one modality to another.

Citations (6)

Summary

We haven't generated a summary for this paper yet.