Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AdaSmooth: An Adaptive Learning Rate Method based on Effective Ratio (2204.00825v1)

Published 2 Apr 2022 in cs.LG and cs.NE

Abstract: It is well known that we need to choose the hyper-parameters in Momentum, AdaGrad, AdaDelta, and other alternative stochastic optimizers. While in many cases, the hyper-parameters are tuned tediously based on experience becoming more of an art than science. We present a novel per-dimension learning rate method for gradient descent called AdaSmooth. The method is insensitive to hyper-parameters thus it requires no manual tuning of the hyper-parameters like Momentum, AdaGrad, and AdaDelta methods. We show promising results compared to other methods on different convolutional neural networks, multi-layer perceptron, and alternative machine learning tasks. Empirical results demonstrate that AdaSmooth works well in practice and compares favorably to other stochastic optimization methods in neural networks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Jun Lu (101 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.