Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluation of Fake News Detection with Knowledge-Enhanced Language Models (2204.00458v2)

Published 1 Apr 2022 in cs.CL

Abstract: Recent advances in fake news detection have exploited the success of large-scale pre-trained LLMs (PLMs). The predominant state-of-the-art approaches are based on fine-tuning PLMs on labelled fake news datasets. However, large-scale PLMs are generally not trained on structured factual data and hence may not possess priors that are grounded in factually accurate knowledge. The use of existing knowledge bases (KBs) with rich human-curated factual information has thus the potential to make fake news detection more effective and robust. In this paper, we investigate the impact of knowledge integration into PLMs for fake news detection. We study several state-of-the-art approaches for knowledge integration, mostly using Wikidata as KB, on two popular fake news datasets - LIAR, a politics-based dataset, and COVID-19, a dataset of messages posted on social media relating to the COVID-19 pandemic. Our experiments show that knowledge-enhanced models can significantly improve fake news detection on LIAR where the KB is relevant and up-to-date. The mixed results on COVID-19 highlight the reliance on stylistic features and the importance of domain-specific and current KBs.

Citations (19)

Summary

We haven't generated a summary for this paper yet.