Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counting conjectures and $e$-local structures in finite reductive groups (2204.00428v4)

Published 1 Apr 2022 in math.RT and math.GR

Abstract: We prove new results in generalized Harish-Chandra theory providing a description of the so-called Brauer--Lusztig blocks in terms of the information encoded in the $\ell$-adic cohomology of Deligne--Lusztig varieties. Then, we propose new conjectures for finite reductive groups by considering geometric analogues of the $\ell$-local structures that lie at the heart of the local-global counting conjectures. For large primes, our conjectures coincide with the counting conjectures thanks to a connection established by Brou\'e, Fong and Srinivasan between $\ell$-structures and their geometric counterpart. Finally, using the description of Brauer--Lusztig blocks mentioned above, we reduce our conjectures to the verification of Clifford theoretic properties expected from certain parametrisation of generalised Harish-Chandra series.

Summary

We haven't generated a summary for this paper yet.