Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Text-To-Speech Data Augmentation for Low Resource Speech Recognition (2204.00291v1)

Published 1 Apr 2022 in cs.CL, cs.SD, and eess.AS

Abstract: Nowadays, the main problem of deep learning techniques used in the development of automatic speech recognition (ASR) models is the lack of transcribed data. The goal of this research is to propose a new data augmentation method to improve ASR models for agglutinative and low-resource languages. This novel data augmentation method generates both synthetic text and synthetic audio. Some experiments were conducted using the corpus of the Quechua language, which is an agglutinative and low-resource language. In this study, a sequence-to-sequence (seq2seq) model was applied to generate synthetic text, in addition to generating synthetic speech using a text-to-speech (TTS) model for Quechua. The results show that the new data augmentation method works well to improve the ASR model for Quechua. In this research, an 8.73% improvement in the word-error-rate (WER) of the ASR model is obtained using a combination of synthetic text and synthetic speech.

Citations (4)

Summary

We haven't generated a summary for this paper yet.