Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Decoupling Features Through Orthogonality Regularization (2203.16772v1)

Published 31 Mar 2022 in cs.SD, cs.AI, and eess.AS

Abstract: Keyword spotting (KWS) and speaker verification (SV) are two important tasks in speech applications. Research shows that the state-of-art KWS and SV models are trained independently using different datasets since they expect to learn distinctive acoustic features. However, humans can distinguish language content and the speaker identity simultaneously. Motivated by this, we believe it is important to explore a method that can effectively extract common features while decoupling task-specific features. Bearing this in mind, a two-branch deep network (KWS branch and SV branch) with the same network structure is developed and a novel decoupling feature learning method is proposed to push up the performance of KWS and SV simultaneously where speaker-invariant keyword representations and keyword-invariant speaker representations are expected respectively. Experiments are conducted on Google Speech Commands Dataset (GSCD). The results demonstrate that the orthogonality regularization helps the network to achieve SOTA EER of 1.31% and 1.87% on KWS and SV, respectively.

Summary

We haven't generated a summary for this paper yet.