Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving speaker de-identification with functional data analysis of f0 trajectories (2203.16738v1)

Published 31 Mar 2022 in cs.SD, cs.CL, and eess.AS

Abstract: Due to a constantly increasing amount of speech data that is stored in different types of databases, voice privacy has become a major concern. To respond to such concern, speech researchers have developed various methods for speaker de-identification. The state-of-the-art solutions utilize deep learning solutions which can be effective but might be unavailable or impractical to apply for, for example, under-resourced languages. Formant modification is a simpler, yet effective method for speaker de-identification which requires no training data. Still, remaining intonational patterns in formant-anonymized speech may contain speaker-dependent cues. This study introduces a novel speaker de-identification method, which, in addition to simple formant shifts, manipulates f0 trajectories based on functional data analysis. The proposed speaker de-identification method will conceal plausibly identifying pitch characteristics in a phonetically controllable manner and improve formant-based speaker de-identification up to 25%.

Citations (20)

Summary

We haven't generated a summary for this paper yet.