Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Metric Learning for Audio-Text Cross-Modal Retrieval (2203.15537v3)

Published 29 Mar 2022 in eess.AS and cs.SD

Abstract: Audio-text retrieval aims at retrieving a target audio clip or caption from a pool of candidates given a query in another modality. Solving such cross-modal retrieval task is challenging because it not only requires learning robust feature representations for both modalities, but also requires capturing the fine-grained alignment between these two modalities. Existing cross-modal retrieval models are mostly optimized by metric learning objectives as both of them attempt to map data to an embedding space, where similar data are close together and dissimilar data are far apart. Unlike other cross-modal retrieval tasks such as image-text and video-text retrievals, audio-text retrieval is still an unexplored task. In this work, we aim to study the impact of different metric learning objectives on the audio-text retrieval task. We present an extensive evaluation of popular metric learning objectives on the AudioCaps and Clotho datasets. We demonstrate that NT-Xent loss adapted from self-supervised learning shows stable performance across different datasets and training settings, and outperforms the popular triplet-based losses. Our code is available at https://github.com/XinhaoMei/audio-text_retrieval.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xinhao Mei (24 papers)
  2. Xubo Liu (66 papers)
  3. Jianyuan Sun (11 papers)
  4. Mark D. Plumbley (114 papers)
  5. Wenwu Wang (148 papers)
Citations (47)