Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SIGLE: a valid procedure for Selective Inference with the Generalized Linear Lasso (2203.15348v3)

Published 29 Mar 2022 in math.ST, stat.ME, and stat.TH

Abstract: This article investigates uncertainty quantification of the generalized linear lasso~(GLL), a popular variable selection method in high-dimensional regression settings. In many fields of study, researchers use data-driven methods to select a subset of variables that are most likely to be associated with a response variable. However, such variable selection methods can introduce bias and increase the likelihood of false positives, leading to incorrect conclusions. In this paper, we propose a post-selection inference framework that addresses these issues and allows for valid statistical inference after variable selection using GLL. We show that our method provides accurate $p$-values and confidence intervals, while maintaining high statistical power. In a second stage, we focus on the sparse logistic regression, a popular classifier in high-dimensional statistics. We show with extensive numerical simulations that SIGLE is more powerful than state-of-the-art PSI methods. SIGLE relies on a new method to sample states from the distribution of observations conditional on the selection event. This method is based on a simulated annealing strategy whose energy is given by the first order conditions of the logistic lasso.

Summary

We haven't generated a summary for this paper yet.