Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Frequency Dynamic Convolution: Frequency-Adaptive Pattern Recognition for Sound Event Detection (2203.15296v2)

Published 29 Mar 2022 in eess.AS

Abstract: 2D convolution is widely used in sound event detection (SED) to recognize two dimensional time-frequency patterns of sound events. However, 2D convolution enforces translation equivariance on sound events along both time and frequency axis while frequency is not shift-invariant dimension. In order to improve physical consistency of 2D convolution on SED, we propose frequency dynamic convolution which applies kernel that adapts to frequency components of input. Frequency dynamic convolution outperforms the baseline by 6.3% in DESED validation dataset in terms of polyphonic sound detection score (PSDS). It also significantly outperforms other pre-existing content-adaptive methods on SED. In addition, by comparing class-wise F1 scores of baseline and frequency dynamic convolution, we showed that frequency dynamic convolution is especially more effective for detection of non-stationary sound events with intricate time-frequency patterns. From this result, we verified that frequency dynamic convolution is superior in recognizing frequency-dependent patterns.

Citations (49)

Summary

We haven't generated a summary for this paper yet.