Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymmetric Rogers--Ramanujan type identities. I. The Andrews--Uncu Conjecture (2203.15168v1)

Published 29 Mar 2022 in math.NT

Abstract: In this work, we start an investigation of asymmetric Rogers--Ramanujan type identities. The first object is the following unexpected relation $$\sum_{n\ge 0} \frac{(-1)n q{3\binom{n}{2}+4n}(q;q3)_n}{(q9;q9)_n} = \frac{(q{4};q{6})_\infty (q{12};q{18})\infty}{(q{5};q{6})\infty (q{9};q{18})_\infty}$$ and its $a$-generalization. We then use this identity as a key ingredient to confirm a recent conjecture of G. E. Andrews and A. K. Uncu.

Summary

We haven't generated a summary for this paper yet.