Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual-Path Style Learning for End-to-End Noise-Robust Speech Recognition (2203.14838v3)

Published 28 Mar 2022 in eess.AS, cs.LG, and cs.SD

Abstract: Automatic speech recognition (ASR) systems degrade significantly under noisy conditions. Recently, speech enhancement (SE) is introduced as front-end to reduce noise for ASR, but it also suppresses some important speech information, i.e., over-suppression. To alleviate this, we propose a dual-path style learning approach for end-to-end noise-robust speech recognition (DPSL-ASR). Specifically, we first introduce clean speech feature along with the fused feature from IFF-Net as dual-path inputs to recover the suppressed information. Then, we propose style learning to map the fused feature close to clean feature, in order to learn latent speech information from the latter, i.e., clean "speech style". Furthermore, we also minimize the distance of final ASR outputs in two paths to improve noise-robustness. Experiments show that the proposed approach achieves relative word error rate (WER) reductions of 10.6% and 8.6% over the best IFF-Net baseline, on RATS and CHiME-4 datasets respectively.

Citations (13)

Summary

We haven't generated a summary for this paper yet.