Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic geometry and delta-points (2203.14528v1)

Published 28 Mar 2022 in math.FA

Abstract: We study Daugavet- and $\Delta$-points in Banach spaces. A norm one element $x$ is a Daugavet-point (respectively a $\Delta$-point) if in every slice of the unit ball (respectively in every slice of the unit ball containing $x$) you can find another element of distance as close to $2$ from $x$ as desired. In this paper we look for criteria and properties ensuring that a norm one element is not a Daugavet- or $\Delta$-point. We show that asymptotically uniformly smooth spaces and reflexive asymptotically uniformly convex spaces do not contain $\Delta$-points. We also show that the same conclusion holds true for the James tree space as well as for its predual. Finally we prove that there exists a superreflexive Banach space with a Daugavet- or $\Delta$-point provided there exists such a space satisfying a weaker condition.

Summary

We haven't generated a summary for this paper yet.