Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conjugate Gradient Method for Generative Adversarial Networks (2203.14495v3)

Published 28 Mar 2022 in cs.LG, cs.CV, and math.OC

Abstract: One of the training strategies of generative models is to minimize the Jensen--Shannon divergence between the model distribution and the data distribution. Since data distribution is unknown, generative adversarial networks (GANs) formulate this problem as a game between two models, a generator and a discriminator. The training can be formulated in the context of game theory and the local Nash equilibrium (LNE). It does not seem feasible to derive guarantees of stability or optimality for the existing methods. This optimization problem is far more challenging than the single objective setting. Here, we use the conjugate gradient method to reliably and efficiently solve the LNE problem in GANs. We give a proof and convergence analysis under mild assumptions showing that the proposed method converges to a LNE with three different learning rate update rules, including a constant learning rate. Finally, we demonstrate that the proposed method outperforms stochastic gradient descent (SGD) and momentum SGD in terms of best Frechet inception distance (FID) score and outperforms Adam on average. The code is available at \url{https://github.com/Hiroki11x/ConjugateGradient_GAN}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hiroki Naganuma (10 papers)
  2. Hideaki Iiduka (35 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.