Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian inference for asymptomatic COVID-19 infection rates (2203.14381v2)

Published 27 Mar 2022 in stat.AP

Abstract: To strengthen inferences meta analyses are commonly used to summarize information from a set of independent studies. In some cases, though, the data may not satisfy the assumptions underlying the meta analysis. Using three Bayesian methods that have a more general structure than the common meta analytic ones, we can show the extent and nature of the pooling that is justified statistically. In this paper, we re-analyze data from several reviews whose objective is to make inference about the COVID-19 asymptomatic infection rate. When it is unlikely that all of the true effect sizes come from a single source researchers should be cautious about pooling the data from all of the studies. Our findings and methodology are applicable to other COVID-19 outcome variables, and more generally.

Summary

We haven't generated a summary for this paper yet.