Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Competition-Based Resilience in Distributed Quadratic Optimization (2203.14099v4)

Published 26 Mar 2022 in eess.SY, cs.MA, cs.SY, and math.OC

Abstract: This paper proposes a novel approach to resilient distributed optimization with quadratic costs in a networked control system (e.g., wireless sensor network, power grid, robotic team) prone to external attacks (e.g., hacking, power outage) that cause agents to misbehave. Departing from classical filtering strategies proposed in literature, we draw inspiration from a game-theoretic formulation of the consensus problem and argue that adding competition to the mix can enhance resilience in the presence of malicious agents. Our intuition is corroborated by analytical and numerical results showing that i) our strategy highlights the presence of a nontrivial tradeoff between blind collaboration and full competition, and ii) such competition-based approach can outperform state-of-the-art algorithms based on Mean Subsequence Reduced.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. S. Raskin. Energy secretary says enemies are capable of shutting down us power grid. (web).
  2. L. Borghese and S. Braithwaite. Hackers block italian covid-19 vaccination booking system in ‘most serious cyberattack ever’. (web).
  3. C. Huang, R. Zhang, and S. Cui, “Optimal power allocation for wireless sensor networks with outage constraint,” IEEE Wireless Commun. Lett., vol. 3, no. 2, pp. 209–212, 2014.
  4. S. Gupta, R. Kambli, S. Wagh, and F. Kazi, “Support-vector-machine-based proactive cascade prediction in smart grid using probabilistic framework,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2478–2486, 2015.
  5. J. Qi, J. Wang, and K. Sun, “Efficient estimation of component interactions for cascading failure analysis by em algorithm,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 3153–3161, 2018.
  6. N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki, “Network intrusion detection for iot security based on learning techniques,” IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2671–2701, 2019.
  7. H. J. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram, “Resilient asymptotic consensus in robust networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 4, pp. 766–781, 2013.
  8. S. M. Dibaji and H. Ishii, “Consensus of second-order multi-agent systems in the presence of locally bounded faults,” Systems & Control Letters, vol. 79, pp. 23–29, 2015.
  9. Y. Wang, H. Ishii, F. Bonnet, and X. Défago, “Resilient consensus against mobile malicious agents,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 3409–3414, 2020, 21st IFAC World Congress.
  10. Y. Shang, “Resilient consensus in multi-agent systems with state constraints,” Automatica, vol. 122, p. 109288, 2020.
  11. J. R. Marden and J. S. Shamma, “Chapter 16 - game theory and distributed control,” in Handbook of Game Theory with Economic Applications, H. P. Young and S. Zamir, Eds.   Elsevier, 2015, vol. 4, pp. 861–899.
  12. A. V. Proskurnikov and R. Tempo, “A tutorial on modeling and analysis of dynamic social networks. part i,” Annual Reviews Control, vol. 43, pp. 65–79, 2017.
  13. J. R. Marden, G. Arslan, and J. S. Shamma, “Cooperative control and potential games,” IEEE Trans. Syst., Man, Cybern. B, vol. 39, no. 6, pp. 1393–1407, 2009.
  14. N. E. Friedkin and E. C. Johnsen, “Social influence and opinions,” J. Math. Sociol., vol. 15, no. 3-4, pp. 193–206, 1990.
  15. S. E. Parsegov, A. V. Proskurnikov, R. Tempo, and N. E. Friedkin, “Novel multidimensional models of opinion dynamics in social networks,” IEEE Trans. Autom. Control, vol. 62, no. 5, pp. 2270–2285, 2017.
  16. M. Yemini, A. Nedić, A. J. Goldsmith, and S. Gil, “Characterizing trust and resilience in distributed consensus for cyberphysical systems,” IEEE Trans. Robot., vol. 38, no. 1, pp. 71–91, 2022.
  17. S. Sundaram and B. Gharesifard, “Consensus-based distributed optimization with malicious nodes,” in 53rd Annu. Allerton Conf. Commun. Control Comput., Sep. 2015, pp. 244–249.
  18. J. S. Baras and X. Liu, “Trust is the cure to distributed consensus with adversaries,” in 2019 27th Mediterranean Conference on Control and Automation (MED), 2019, pp. 195–202.
  19. S. M. Dibaji, M. Safi, and H. Ishii, “Resilient distributed averaging,” in American Control Conference, 2019, pp. 96–101.
Citations (4)

Summary

We haven't generated a summary for this paper yet.