Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficiency of higher-order algorithms for minimizing composite functions (2203.13367v3)

Published 24 Mar 2022 in math.OC

Abstract: Composite minimization involves a collection of functions which are aggregated in a nonsmooth manner. It covers, as a particular case, smooth approximation of minimax games, minimization of max-type functions, and simple composite minimization problems, where the objective function has a nonsmooth component. We design a higher-order majorization algorithmic framework for fully composite problems (possibly nonconvex). Our framework replaces each component with a higher-order surrogate such that the corresponding error function has a higher-order Lipschitz continuous derivative. We present convergence guarantees for our method for composite optimization problems with (non)convex and (non)smooth objective function. In particular, we prove stationary point convergence guarantees for general nonconvex (possibly nonsmooth) problems and under Kurdyka-Lojasiewicz (KL) property of the objective function we derive improved rates depending on the KL parameter. For convex (possibly nonsmooth) problems we also provide sublinear convergence rates.

Summary

We haven't generated a summary for this paper yet.