Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Personas Using Mechanic Frequencies and Game State Traces (2203.13351v2)

Published 24 Mar 2022 in cs.AI

Abstract: We investigate how to efficiently predict play personas based on playtraces. Play personas can be computed by calculating the action agreement ratio between a player and a generative model of playing behavior, a so-called procedural persona. But this is computationally expensive and assumes that appropriate procedural personas are readily available. We present two methods for estimating player persona, one using regular supervised learning and aggregate measures of game mechanics initiated, and another based on sequence learning on a trace of closely cropped gameplay observations. While both of these methods achieve high accuracy when predicting play personas defined by agreement with procedural personas, they utterly fail to predict play style as defined by the players themselves using a questionnaire. This interesting result highlights the value of using computational methods in defining play personas.

Citations (3)

Summary

We haven't generated a summary for this paper yet.