Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Industrial Style Transfer with Large-scale Geometric Warping and Content Preservation (2203.12835v1)

Published 24 Mar 2022 in cs.CV

Abstract: We propose a novel style transfer method to quickly create a new visual product with a nice appearance for industrial designers' reference. Given a source product, a target product, and an art style image, our method produces a neural warping field that warps the source shape to imitate the geometric style of the target and a neural texture transformation network that transfers the artistic style to the warped source product. Our model, Industrial Style Transfer (InST), consists of large-scale geometric warping (LGW) and interest-consistency texture transfer (ICTT). LGW aims to explore an unsupervised transformation between the shape masks of the source and target products for fitting large-scale shape warping. Furthermore, we introduce a mask smoothness regularization term to prevent the abrupt changes of the details of the source product. ICTT introduces an interest regularization term to maintain important contents of the warped product when it is stylized by using the art style image. Extensive experimental results demonstrate that InST achieves state-of-the-art performance on multiple visual product design tasks, e.g., companies' snail logos and classical bottles (please see Fig. 1). To the best of our knowledge, we are the first to extend the neural style transfer method to create industrial product appearances. Project page: \ulr{https://jcyang98.github.io/InST/home.html}. Code available at: \url{https://github.com/jcyang98/InST}.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub