Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Exploration via First-Person Behavior Cloning Assisted Rapidly-Exploring Random Trees (2203.12774v2)

Published 23 Mar 2022 in cs.LG, cs.AI, and cs.RO

Abstract: Modern day computer games have extremely large state and action spaces. To detect bugs in these games' models, human testers play the games repeatedly to explore the game and find errors in the games. Such gameplay is exhaustive and time consuming. Moreover, since robotics simulators depend on similar methods of model specification and debugging, the problem of finding errors in the model is of interest to the robotics community to ensure robot behaviors and interactions are consistent in simulators. Previous methods have used reinforcement learning arXiv:2103.13798 and search based methods (Chang, 2019, (Chang, 2021) arXiv:1811.06962 including Rapidly-exploring Random Trees (RRT) to explore a game's state-action space to find bugs. However, such search and exploration based methods are not efficient at exploring the state-action space without a pre-defined heuristic. In this work we attempt to combine a human-tester's expertise in solving games, and the RRT's exhaustiveness to search a game's state space efficiently with high coverage. This paper introduces Cloning Assisted RRT (CA-RRT) to test a game through search. We compare our methods to two existing baselines: 1) a weighted-RRT as described by arXiv:1812.03125; 2) human demonstration seeded RRT as described by Chang et. al. We find CA-RRT is applicable to more game maps and explores more game states in fewer tree expansions/iterations when compared to the existing baselines. In each test, CA-RRT reached more states on average in the same number of iterations as weighted-RRT. In our tested environments, CA-RRT reached the same number of states as weighted-RRT by more than 5000 fewer iterations on average, almost a 50% reduction and applied to more scenarios than. Moreover, as a consequence of our first person behavior cloning approach, CA-RRT worked on unseen game maps than just seeding the RRT with human demonstrated states.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Max Zuo (4 papers)
  2. Logan Schick (1 paper)
  3. Matthew Gombolay (61 papers)
  4. Nakul Gopalan (16 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.