Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integer colorings with no rainbow $k$-term arithmetic progression (2203.12735v1)

Published 23 Mar 2022 in math.CO

Abstract: In this paper, we study the rainbow Erd\H{o}s-Rothschild problem with respect to $k$-term arithmetic progressions. For a set of positive integers $S \subseteq [n]$, an $r$-coloring of $S$ is \emph{rainbow $k$-AP-free} if it contains no rainbow $k$-term arithmetic progression. Let $g_{r,k}(S)$ denote the number of rainbow $k$-AP-free $r$-colorings of $S$. For sufficiently large $n$ and fixed integers $r\ge k\ge 3$, we show that $g_{r,k}(S)<g_{r,k}([n])$ for any proper subset $S\subset [n]$. Further, we prove that $\lim_{n\to \infty}g_{r,k}([n])/(k-1)n= \binom{r}{k-1}$. Our result is asymptotically best possible and implies that, almost all rainbow $k$-AP-free $r$-colorings of $[n]$ use only $k-1$ colors.

Summary

We haven't generated a summary for this paper yet.