Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Frequency Filtering for Domain Generalization (2203.12198v2)

Published 23 Mar 2022 in cs.CV

Abstract: Improving the generalization ability of Deep Neural Networks (DNNs) is critical for their practical uses, which has been a longstanding challenge. Some theoretical studies have uncovered that DNNs have preferences for some frequency components in the learning process and indicated that this may affect the robustness of learned features. In this paper, we propose Deep Frequency Filtering (DFF) for learning domain-generalizable features, which is the first endeavour to explicitly modulate the frequency components of different transfer difficulties across domains in the latent space during training. To achieve this, we perform Fast Fourier Transform (FFT) for the feature maps at different layers, then adopt a light-weight module to learn attention masks from the frequency representations after FFT to enhance transferable components while suppressing the components not conducive to generalization. Further, we empirically compare the effectiveness of adopting different types of attention designs for implementing DFF. Extensive experiments demonstrate the effectiveness of our proposed DFF and show that applying our DFF on a plain baseline outperforms the state-of-the-art methods on different domain generalization tasks, including close-set classification and open-set retrieval.

Citations (37)

Summary

We haven't generated a summary for this paper yet.