Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Brooks' Theorem in Graph Streams: A Single-Pass Semi-Streaming Algorithm for $Δ$-Coloring (2203.10984v2)

Published 21 Mar 2022 in cs.DS

Abstract: Every graph with maximum degree $\Delta$ can be colored with $(\Delta+1)$ colors using a simple greedy algorithm. Remarkably, recent work has shown that one can find such a coloring even in the semi-streaming model. But, in reality, one almost never needs $(\Delta+1)$ colors to properly color a graph. Indeed, the celebrated \Brooks' theorem states that every (connected) graph beside cliques and odd cycles can be colored with $\Delta$ colors. Can we find a $\Delta$-coloring in the semi-streaming model as well? We settle this key question in the affirmative by designing a randomized semi-streaming algorithm that given any graph, with high probability, either correctly declares that the graph is not $\Delta$-colorable or outputs a $\Delta$-coloring of the graph. The proof of this result starts with a detour. We first (provably) identify the extent to which the previous approaches for streaming coloring fail for $\Delta$-coloring: for instance, all these approaches can handle streams with repeated edges and they can run in $o(n2)$ time -- we prove that neither of these tasks is possible for $\Delta$-coloring. These impossibility results however pinpoint exactly what is missing from prior approaches when it comes to $\Delta$-coloring. We then build on these insights to design a semi-streaming algorithm that uses $(i)$ a novel sparse-recovery approach based on sparse-dense decompositions to (partially) recover the "problematic" subgraphs of the input -- the ones that form the basis of our impossibility results -- and $(ii)$ a new coloring approach for these subgraphs that allows for recoloring of other vertices in a controlled way without relying on local explorations or finding "augmenting paths" that are generally impossible for semi-streaming algorithms. We believe both these techniques can be of independent interest.

Citations (11)

Summary

We haven't generated a summary for this paper yet.