Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Intermediate-level Attack Framework on The Basis of Linear Regression (2203.10723v2)

Published 21 Mar 2022 in cs.CV, cs.CR, cs.LG, and cs.NE

Abstract: This paper substantially extends our work published at ECCV, in which an intermediate-level attack was proposed to improve the transferability of some baseline adversarial examples. Specifically, we advocate a framework in which a direct linear mapping from the intermediate-level discrepancies (between adversarial features and benign features) to prediction loss of the adversarial example is established. By delving deep into the core components of such a framework, we show that 1) a variety of linear regression models can all be considered in order to establish the mapping, 2) the magnitude of the finally obtained intermediate-level adversarial discrepancy is correlated with the transferability, 3) further boost of the performance can be achieved by performing multiple runs of the baseline attack with random initialization. In addition, by leveraging these findings, we achieve new state-of-the-arts on transfer-based $\ell_\infty$ and $\ell_2$ attacks. Our code is publicly available at https://github.com/qizhangli/ila-plus-plus-lr.

Citations (11)

Summary

We haven't generated a summary for this paper yet.