Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The price of unfairness in linear bandits with biased feedback (2203.09784v2)

Published 18 Mar 2022 in math.ST, stat.ML, and stat.TH

Abstract: In this paper, we study the problem of fair sequential decision making with biased linear bandit feedback. At each round, a player selects an action described by a covariate and by a sensitive attribute. The perceived reward is a linear combination of the covariates of the chosen action, but the player only observes a biased evaluation of this reward, depending on the sensitive attribute. To characterize the difficulty of this problem, we design a phased elimination algorithm that corrects the unfair evaluations, and establish upper bounds on its regret. We show that the worst-case regret is smaller than $\mathcal{O}(\kappa_{1/3}\log(T){1/3}T{2/3})$, where $\kappa_$ is an explicit geometrical constant characterizing the difficulty of bias estimation. We prove lower bounds on the worst-case regret for some sets of actions showing that this rate is tight up to a possible sub-logarithmic factor. We also derive gap-dependent upper bounds on the regret, and matching lower bounds for some problem instance.Interestingly, these results reveal a transition between a regime where the problem is as difficult as its unbiased counterpart, and a regime where it can be much harder.

Citations (1)

Summary

We haven't generated a summary for this paper yet.