Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Tail inference using extreme U-statistics (2203.08505v2)

Published 16 Mar 2022 in math.ST and stat.TH

Abstract: Extreme U-statistics arise when the kernel of a U-statistic has a high degree but depends only on its arguments through a small number of top order statistics. As the kernel degree of the U-statistic grows to infinity with the sample size, estimators built out of such statistics form an intermediate family in between those constructed in the block maxima and peaks-over-threshold frameworks in extreme value analysis. The asymptotic normality of extreme U-statistics based on location-scale invariant kernels is established. Although the asymptotic variance coincides with the one of the H\'ajek projection, the proof goes beyond considering the first term in Hoeffding's variance decomposition. We propose a kernel depending on the three highest order statistics leading to a location-scale invariant estimator of the extreme value index resembling the Pickands estimator. This extreme Pickands U-estimator is asymptotically normal and its finite-sample performance is competitive with that of the pseudo-maximum likelihood estimator.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.