Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Energy-Latency Attacks via Sponge Poisoning (2203.08147v5)

Published 14 Mar 2022 in cs.CR, cs.CV, and cs.LG

Abstract: Sponge examples are test-time inputs optimized to increase energy consumption and prediction latency of deep networks deployed on hardware accelerators. By increasing the fraction of neurons activated during classification, these attacks reduce sparsity in network activation patterns, worsening the performance of hardware accelerators. In this work, we present a novel training-time attack, named sponge poisoning, which aims to worsen energy consumption and prediction latency of neural networks on any test input without affecting classification accuracy. To stage this attack, we assume that the attacker can control only a few model updates during training -- a likely scenario, e.g., when model training is outsourced to an untrusted third party or distributed via federated learning. Our extensive experiments on image classification tasks show that sponge poisoning is effective, and that fine-tuning poisoned models to repair them poses prohibitive costs for most users, highlighting that tackling sponge poisoning remains an open issue.

Citations (22)

Summary

We haven't generated a summary for this paper yet.