KATRIN: Status and Prospects for the Neutrino Mass and Beyond (2203.08059v3)
Abstract: The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to measure a high-precision integral spectrum of the endpoint region of T2 beta decay, with the primary goal of probing the absolute mass scale of the neutrino. After a first tritium commissioning campaign in 2018, the experiment has been regularly running since 2019, and in its first two measurement campaigns has already achieved a sub-eV sensitivity. After 1000 days of data-taking, KATRIN's design sensitivity is 0.2 eV at the 90% confidence level. In this white paper we describe the current status of KATRIN; explore prospects for measuring the neutrino mass and other physics observables, including sterile neutrinos and other beyond-Standard-Model hypotheses; and discuss research-and-development projects that may further improve the KATRIN sensitivity.
- C. Kraus et al., Final results from phase II of the Mainz neutrino mass search in tritium β𝛽\betaitalic_β decay. Eur. Phys. J. C 40 (4): 447 (2005)
- V. N. Aseev et al., Upper limit on the electron antineutrino mass from the Troitsk experiment. Phys. Rev. D 84: 112003 (2011)
- L. Kuckert et al., Modelling of gas dynamical properties of the KATRIN tritium source and implications for the neutrino mass measurement. Vacuum 158: 195 (2018)
- M. Babutzka et al., Monitoring of the operating parameters of the KATRIN windowless gaseous tritium source. New J. Phys. 14 (10): 103046 (2012)
- M. Sturm et al., Kilogram scale throughput performance of the KATRIN tritium handling system. Fusion Eng. Design 170: 112507 (2021)
- A. Marsteller et al., Neutral tritium gas reduction in the KATRIN differential pumping sections. Vacuum 184: 109979 (2021)
- B. Bornschein et al., Experimental validation of a method for performance monitoring of the front-end permeators in the TEP system of ITER. Fusion Eng. Design 75–79: 645 (2005)
- S. Grohmann et al., The thermal behaviour of the tritium source in KATRIN. Cryogenics 55-56 (0): 5 (2013)
- C. Rodenbeck et al., Wideband precision stabilization of the -18.6kV retarding voltage for the KATRIN spectrometer. JINST 17 (06): P06003 (2022)
- F. Glück et al., Electromagnetic design of the large-volume air coil system of the KATRIN experiment. New J. Phys. 15 (8): 083025 (2013)
- A. Lokhov et al., Background reduction at the KATRIN experiment by the shifted analysing plane configuration. Eur. Phys. J. C 82: 258 (2022)
- D. Vénos et al., Gaseous source of 83mKr conversion electrons for the neutrino experiment KATRIN. JINST 9 (12): P12010 (2014)
- J. F. Amsbaugh et al., Focal-plane detector system for the KATRIN experiment. Nucl. Inst. Meth. A 778: 40 (2015)
- F. M. Fränkle et al., Radon induced background processes in the KATRIN pre-spectrometer. Astropart. Phys. 35 (3): 128 (2011)
- S. Mertens et al., Background due to stored electrons following nuclear decays in the KATRIN spectrometers and its impact on the neutrino mass sensitivity. Astropart. Phys. 41: 52 (2013)
- F. M. Fränkle et al., KATRIN background due to surface radioimpurities. Astropart. Phys. 138: 102686 (2022)
- N. Doss et al., Molecular effects in investigations of tritium molecule β𝛽\betaitalic_β decay endpoint experiments. Phys. Rev. C 73: 025502 (2006)
- G. J. Feldman and R. D. Cousins, Unified approach to the classical statistical analysis of small signals. Phys. Rev. D 57: 3873 (1998)
- E. G. Myers et al., Atomic masses of tritium and helium-3. Phys. Rev. Lett. 114: 013003 (2015)
- C. Weinheimer et al., Improved limit on the electron anti-neutrino rest mass from tritium beta decay. Phys. Lett. B 300: 210 (1993)
- A. I. Belesev et al., Results of the Troitsk experiment on the search for the electron anti-neutrino rest mass in tritium beta decay. Phys. Lett. B 350: 263 (1995)
- V. M. Lobashev et al., Neutrino mass and anomaly in the tritium beta-spectrum. Results of the “Troitsk ν𝜈\nuitalic_ν-mass” experiment. Nuc. Phys. B - Proc. Suppl. 77 (1): 327 (1999) , URL https://www.sciencedirect.com/science/article/pii/S0920563299004387
- R. R. Volkas, Introduction to sterile neutrinos. Prog. Part. Nucl. Phys. 48: 161 (2002)
- C. Kraus et al., Limit on sterile neutrino contribution from the Mainz Neutrino Mass Experiment. Eur. Phys. J. C 73 (2): 2323 (2013)
- A. I. Belesev et al., An upper limit on additional neutrino mass eigenstate in 2 to 100 eV region from ’Troitsk nu-mass’ data. JETP Lett. 97: 67 (2013)
- C. Benso et al., Prospects for Finding Sterile Neutrino Dark Matter at KATRIN. Phys. Rev. D 100 (11): 115035 (2019)
- E. Holzschuh et al., Search for heavy neutrinos in the β𝛽\betaitalic_β-spectrum of 6363{}^{63}start_FLOATSUPERSCRIPT 63 end_FLOATSUPERSCRIPTNi. Phys. Lett. B451: 247 (1999)
- J. Bonn et al., The KATRIN sensitivity to the neutrino mass and to right-handed currents in beta decay. Phys. Lett. B 703: 310 (2011)
- N. M. N. Steinbrink et al., Statistical sensitivity on right-handed currents in presence of eV scale sterile neutrinos with KATRIN. JCAP 06: 015 (2017)
- D. Colladay and V. A. Kostelecký, CPT𝐶𝑃𝑇{CPT}italic_C italic_P italic_T violation and the standard model. Phys. Rev. D 55: 6760 (1997)
- D. Colladay and V. A. Kostelecký, Lorentz-violating extension of the standard model. Phys. Rev. D 58: 116002 (1998)
- V. A. Kostelecký and M. Mewes, Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 85: 096005 (2012)
- R. Lehnert, Beta-Decay Spectrum and Lorentz Violation. Phys. Lett. B 828: 137017 (2022)
- P. F. de Salas et al., Calculation of the local density of relic neutrinos. JCAP 2017 (09): 034 (2017)
- A. Faessler et al., Can one measure the cosmic neutrino background? Int. J. Mod. Phys. E 26 (01n02): 1740008 (2017)
- R. G. H. Robertson et al., Limit on ν¯esubscriptnormal-¯𝜈normal-e\overline{\nu}_{\mathrm{e}}over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT mass from observation of the β𝛽\betaitalic_β decay of molecular tritium. Phys. Rev. Lett. 67: 957 (1991)
- H. B. Pedersen et al., Crossed beam photodissociation imaging of HeH+superscriptnormal-HeH{\mathrm{HeH}}^{+}roman_HeH start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT with vacuum ultraviolet free-electron laser pulses. Phys. Rev. Lett. 98: 223202 (2007)
- H. B. Pedersen et al., Experimental investigation of dissociation pathways of cooled HeH+{}^{+}start_FLOATSUPERSCRIPT + end_FLOATSUPERSCRIPT following valence electron excitation at 32 nm by intense free-electron-laser radiation. Phys. Rev. A 82: 023415 (2010)
- P. Wustelt et al., Heteronuclear limit of strong-field ionization: Fragmentation of HeH+superscriptnormal-HeH{\mathrm{HeH}}^{+}roman_HeH start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT by intense ultrashort laser pulses. Phys. Rev. Lett. 121: 073203 (2018)
- O. Rest et al., A novel ppm-precise absolute calibration method for precision high-voltage dividers. Metrologia 56 (4): 045007 (2019)
- J. Ladislas Wiza, Microchannel plate detectors. Nuclear Instruments and Methods 162 (1): 587 (1979)
- J. Va’vra and T. Sumiyoshi, Ion feedback suppression using inclined MCP holes in a “single-MCP+Micromegas+pads” detector. IEEE Symp. Conf. Record Nucl. Sci. 2004 2: 1142 (2004)
- T. Wolz et al., Stimulated decay and formation of antihydrogen atoms. Phys. Rev. A 101: 043412 (2020)
- M. Vieille-Grosjean et al., Induced THz transitions in Rydberg caesium atoms for application in antihydrogen experiments. Eur. Phys. J. D 75: 27 (2021)
- J. F. Ziegler, SRIM-2003. Nucl. Instr. Meth. B 219-220: 1027 (2004)
- N. Steinbrink et al., Neutrino mass sensitivity by MAC-E-Filter based time-of-flight spectroscopy with the example of KATRIN. New J. Phys. 15 (11): 113020 (2013)
- P. Lechner et al., Silicon drift detectors for high resolution room temperature X-ray spectroscopy. Nucl. Instr. Meth. A 377: 346 (1996)
- P. Lechner et al., Silicon drift detectors for high count rate X-ray spectroscopy at room temperature. Nucl. Instrum. Meth. A 458: 281 (2001)
- P. King et al., Design and characterization of Kerberos: a 48-channel analog pulse processing and data acquisition platform. JINST 16 (07): T07007 (2021)
- M. Gugiatti et al., Towards the tristan detector: Characterization of a 47-pixel monolithic sdd array. Nucl. Instr. Meth. A 1025: 166102 (2022)
- M. Gugiatti et al., Characterisation of a silicon drift detector for high-resolution electron spectroscopy. Nucl. Instrum. Meth. A 979: 164474 (2020)
- S. Mertens et al., A novel detector system for KATRIN to search for keV-scale sterile neutrinos. J. Phys. G 46 (6): 065203 (2019)
- S. Mertens et al., Characterization of silicon drift detectors with electrons for the TRISTAN project. J. Phys. G 48 (1): 015008 (2020)
- M. Biassoni et al., Electron spectrometry with Silicon drift detectors: a GEANT4 based method for detector response reconstruction. Eur. Phys. J. Plus 136 (1): 125 (2021)