Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How informative is the Order Book Beyond the Best Levels? Machine Learning Perspective (2203.07922v1)

Published 15 Mar 2022 in cs.CE

Abstract: Research on limit order book markets has been rapidly growing and nowadays high-frequency full order book data is widely available for researchers and practitioners. However, it is common that research papers use the best level data only, which motivates us to ask whether the exclusion of the quotes deeper in the book over multiple price levels causes performance degradation. In this paper, we address this question by using modern Machine Learning (ML) techniques to predict mid-price movements without assuming that limit order book markets represent a linear system. We provide a number of results that are robust across ML prediction models, feature selection algorithms, data sets, and prediction horizons. We find that the best bid and ask levels are systematically identified not only as the most informative levels in the order books, but also to carry most of the information needed for good prediction performance. On the other hand, even if the top-of-the-book levels contain most of the relevant information, to maximize models' performance one should use all data across all the levels. Additionally, the informativeness of the order book levels clearly decreases from the first to the fourth level while the rest of the levels are approximately equally important.

Citations (3)

Summary

We haven't generated a summary for this paper yet.