Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Bigraphical Lasso: Two-way Sparse Network Inference for Count Data (2203.07912v1)

Published 15 Mar 2022 in stat.ML, cs.LG, and stat.AP

Abstract: Classically, statistical datasets have a larger number of data points than features ($n > p$). The standard model of classical statistics caters for the case where data points are considered conditionally independent given the parameters. However, for $n\approx p$ or $p > n$ such models are poorly determined. Kalaitzis et al. (2013) introduced the Bigraphical Lasso, an estimator for sparse precision matrices based on the Cartesian product of graphs. Unfortunately, the original Bigraphical Lasso algorithm is not applicable in case of large p and n due to memory requirements. We exploit eigenvalue decomposition of the Cartesian product graph to present a more efficient version of the algorithm which reduces memory requirements from $O(n2p2)$ to $O(n2 + p2)$. Many datasets in different application fields, such as biology, medicine and social science, come with count data, for which Gaussian based models are not applicable. Our multi-way network inference approach can be used for discrete data. Our methodology accounts for the dependencies across both instances and features, reduces the computational complexity for high dimensional data and enables to deal with both discrete and continuous data. Numerical studies on both synthetic and real datasets are presented to showcase the performance of our method.

Citations (5)

Summary

We haven't generated a summary for this paper yet.