Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial amplitude swap towards robust image classifiers (2203.07138v3)

Published 14 Mar 2022 in cs.CV and eess.IV

Abstract: The vulnerability of convolutional neural networks (CNNs) to image perturbations such as common corruptions and adversarial perturbations has recently been investigated from the perspective of frequency. In this study, we investigate the effect of the amplitude and phase spectra of adversarial images on the robustness of CNN classifiers. Extensive experiments revealed that the images generated by combining the amplitude spectrum of adversarial images and the phase spectrum of clean images accommodates moderate and general perturbations, and training with these images equips a CNN classifier with more general robustness, performing well under both common corruptions and adversarial perturbations. We also found that two types of overfitting (catastrophic overfitting and robust overfitting) can be circumvented by the aforementioned spectrum recombination. We believe that these results contribute to the understanding and the training of truly robust classifiers.

Citations (1)

Summary

We haven't generated a summary for this paper yet.