Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modelling word learning and recognition using visually grounded speech (2203.06937v1)

Published 14 Mar 2022 in cs.CL

Abstract: Background: Computational models of speech recognition often assume that the set of target words is already given. This implies that these models do not learn to recognise speech from scratch without prior knowledge and explicit supervision. Visually grounded speech models learn to recognise speech without prior knowledge by exploiting statistical dependencies between spoken and visual input. While it has previously been shown that visually grounded speech models learn to recognise the presence of words in the input, we explicitly investigate such a model as a model of human speech recognition. Methods: We investigate the time-course of word recognition as simulated by the model using a gating paradigm to test whether its recognition is affected by well-known word-competition effects in human speech processing. We furthermore investigate whether vector quantisation, a technique for discrete representation learning, aids the model in the discovery and recognition of words. Results/Conclusion: Our experiments show that the model is able to recognise nouns in isolation and even learns to properly differentiate between plural and singular nouns. We also find that recognition is influenced by word competition from the word-initial cohort and neighbourhood density, mirroring word competition effects in human speech comprehension. Lastly, we find no evidence that vector quantisation is helpful in discovering and recognising words. Our gating experiments even show that the vector quantised model requires more of the input sequence for correct recognition.

Summary

We haven't generated a summary for this paper yet.