Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy (2203.06345v1)

Published 12 Mar 2022 in cs.LG and cs.CV

Abstract: Vision transformers (ViTs) have gained increasing popularity as they are commonly believed to own higher modeling capacity and representation flexibility, than traditional convolutional networks. However, it is questionable whether such potential has been fully unleashed in practice, as the learned ViTs often suffer from over-smoothening, yielding likely redundant models. Recent works made preliminary attempts to identify and alleviate such redundancy, e.g., via regularizing embedding similarity or re-injecting convolution-like structures. However, a "head-to-toe assessment" regarding the extent of redundancy in ViTs, and how much we could gain by thoroughly mitigating such, has been absent for this field. This paper, for the first time, systematically studies the ubiquitous existence of redundancy at all three levels: patch embedding, attention map, and weight space. In view of them, we advocate a principle of diversity for training ViTs, by presenting corresponding regularizers that encourage the representation diversity and coverage at each of those levels, that enabling capturing more discriminative information. Extensive experiments on ImageNet with a number of ViT backbones validate the effectiveness of our proposals, largely eliminating the observed ViT redundancy and significantly boosting the model generalization. For example, our diversified DeiT obtains 0.70%~1.76% accuracy boosts on ImageNet with highly reduced similarity. Our codes are fully available in https://github.com/VITA-Group/Diverse-ViT.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Tianlong Chen (202 papers)
  2. Zhenyu Zhang (250 papers)
  3. Yu Cheng (354 papers)
  4. Ahmed Awadallah (27 papers)
  5. Zhangyang Wang (375 papers)
Citations (34)

Summary

We haven't generated a summary for this paper yet.