Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Research on Parallel SVM Algorithm Based on Cascade SVM (2203.05768v1)

Published 11 Mar 2022 in cs.LG

Abstract: Cascade SVM (CSVM) can group datasets and train subsets in parallel, which greatly reduces the training time and memory consumption. However, the model accuracy obtained by using this method has some errors compared with direct training. In order to reduce the error, we analyze the causes of error in grouping training, and summarize the grouping without error under ideal conditions. A Balanced Cascade SVM (BCSVM) algorithm is proposed, which balances the sample proportion in the subset after grouping to ensure that the sample proportion in the subset is the same as the original dataset. At the same time, it proves that the accuracy of the model obtained by BCSVM algorithm is higher than that of CSVM. Finally, two common datasets are used for experimental verification, and the results show that the accuracy error obtained by using BCSVM algorithm is reduced from 1% of CSVM to 0.1%, which is reduced by an order of magnitude.

Citations (1)

Summary

We haven't generated a summary for this paper yet.