Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven Control of Unknown Linear Systems via Quantized Feedback (2203.05245v1)

Published 10 Mar 2022 in math.OC, cs.SY, and eess.SY

Abstract: Control using quantized feedback is a fundamental approach to system synthesis with limited communication capacity. In this paper, we address the stabilization problem for unknown linear systems with logarithmically quantized feedback, via a direct data-driven control method. By leveraging a recently developed matrix S-lemma, we prove a sufficient and necessary condition for the existence of a common stabilizing controller for all possible dynamics consistent with data, in the form of a linear matrix inequality. Moreover, we formulate semi-definite programming to solve the coarsest quantization density. By establishing its connections to unstable eigenvalues of the state matrix, we further prove a necessary rank condition on the data for quantized feedback stabilization. Finally, we validate our theoretical results by numerical examples.

Citations (5)

Summary

We haven't generated a summary for this paper yet.