Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shfl-BW: Accelerating Deep Neural Network Inference with Tensor-Core Aware Weight Pruning (2203.05016v2)

Published 9 Mar 2022 in cs.DC

Abstract: Weight pruning in deep neural networks (DNNs) can reduce storage and computation cost, but struggles to bring practical speedup to the model inference time. Tensor-cores can significantly boost the throughput of GPUs on dense computation, but exploiting tensor-cores for sparse DNNs is very challenging. Compared to existing CUDA-cores, tensor-cores require higher data reuse and matrix-shaped instruction granularity, both difficult to yield from sparse DNN kernels. Existing pruning approaches fail to balance the demands of accuracy and efficiency: random sparsity preserves the model quality well but prohibits tensor-core acceleration, while highly-structured block-wise sparsity can exploit tensor-cores but suffers from severe accuracy loss. In this work, we propose a novel sparse pattern, Shuffled Block-wise sparsity (Shfl-BW), designed to efficiently utilize tensor-cores while minimizing the constraints on the weight structure. Our insight is that row- and column-wise permutation provides abundant flexibility for the weight structure, while introduces negligible overheads using our GPU kernel designs. We optimize the GPU kernels for Shfl-BW in linear and convolution layers. Evaluations show that our techniques can achieve the state-of-the-art speed-accuracy trade-offs on GPUs. For example, with small accuracy loss, we can accelerate the computation-intensive layers of Transformer by 1.81, 4.18 and 1.90 times on NVIDIA V100, T4 and A100 GPUs respectively at 75% sparsity.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Guyue Huang (11 papers)
  2. Haoran Li (166 papers)
  3. Minghai Qin (28 papers)
  4. Fei Sun (151 papers)
  5. Yufei Ding (81 papers)
  6. Yuan Xie (188 papers)
Citations (14)