Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Data Splitting Scheme for Federated Edge Learning in IoT Networks (2203.04376v1)

Published 8 Mar 2022 in cs.NI

Abstract: Federated Edge Learning (FEEL) is a promising distributed learning technique that aims to train a shared global model while reducing communication costs and promoting users' privacy. However, the training process might significantly occupy a long time due to the nature of the used data for training, which leads to higher energy consumption and therefore impacts the model convergence. To tackle this issue, we propose a data-driven federated edge learning scheme that tends to select suitable participating nodes based on quality data and energy. First, we design an unsupervised data-aware splitting scheme that partitions the node's local data into diverse samples used for training. We incorporate a similarity index to select quality data that enhances the training performance. Then, we propose a heuristic participating nodes selection scheme to minimize the communication and computation energy consumption, as well as the amount of communication rounds. The obtained results show that the proposed scheme substantially outperforms the vanilla FEEL in terms of energy consumption and the number of communication rounds.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Boubakr Nour (14 papers)
  2. Soumaya Cherkaoui (44 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.