Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some multivariable Rado numbers (2203.04126v2)

Published 5 Mar 2022 in math.CO

Abstract: The Rado number of an equation is a Ramsey-theoretic quantity associated to the equation. Let $\mathcal{E}$ be a linear equation. Denote by $\operatorname{R}r(\mathcal{E})$ the minimal integer, if it exists, such that any $r$-coloring of $[1,\operatorname{R}_r(\mathcal{E})]$ must admit a monochromatic solution to $\mathcal{E}$. In this paper, we give upper and lower bounds for the Rado number of $\sum{i=1}{m-2}x_i+kx_{m-1}=\ell x_{m}$, and some exact values are also given. Furthermore, we derive some results for the cases that $\ell=m=4$ and $m=5, \ell=k+i \ (1\leq i\leq 5)$. As a generalization, the \emph{$r$-color Rado numbers} for linear equations $\mathcal{E}_1,\mathcal{E}_2,...,\mathcal{E}_r$ is defined as the minimal integer, if it exists, such that any $r$-coloring of $[1,\operatorname{R}_r(\mathcal{E}_1,\mathcal{E}_2,...,\mathcal{E}_r)]$ must admit a monochromatic solution to some $\mathcal{E}_i$, where $1\leq i\leq r$. A lower bound for $\operatorname{R}_r(\mathcal{E}_1,\mathcal{E}_2,...,\mathcal{E}_r)$ and the exact values of $\operatorname{R}_2(x+y=z,\ell x=y)=5k$ and $\operatorname{R}_2(x+y=z, x+a=y)$ was given by Lov\'{a}sz Local Lemma.

Summary

We haven't generated a summary for this paper yet.