Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Why we should interpret density matrices as moment matrices: the case of (in)distinguishable particles and the emergence of classical reality (2203.04124v2)

Published 8 Mar 2022 in quant-ph, math.PR, math.ST, and stat.TH

Abstract: We introduce a formulation of quantum theory (QT) as a general probabilistic theory but expressed via quasi-expectation operators (QEOs). This formulation provides a direct interpretation of density matrices as quasi-moment matrices. Using QEOs, we will provide a series of representation theorems, a' la de Finetti, relating a classical probability mass function (satisfying certain symmetries) to a quasi-expectation operator. We will show that QT for both distinguishable and indistinguishable particles can be formulated in this way. Although particles indistinguishability is considered a truly "weird" quantum phenomenon, it is not special. We will show that finitely exchangeable probabilities for a classical dice are as weird as QT. Using this connection, we will rederive the first and second quantisation in QT for bosons through the classical statistical concept of exchangeable random variables. Using this approach, we will show how classical reality emerges in QT as the number of identical bosons increases (similar to what happens for finitely exchangeable sequences of rolls of a classical dice).

Citations (1)

Summary

We haven't generated a summary for this paper yet.