Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Dynamic Parameter Estimation of an Alkaline Electrolysis System Based on Bayesian Inference (2203.03883v1)

Published 8 Mar 2022 in eess.SY, cs.SY, and math.OC

Abstract: When directly coupled with fluctuating energy sources such as wind and photovoltage power, the alkaline electrolysis (AEL) in a power-to-hydrogen (P2H) system is required to operate flexibly by dynamically adjusting its hydrogen production rate. The flex-ibility characteristics, e.g., loading range and ramping rate, of an AEL system are significantly influenced by some parameters re-lated to the dynamic processes of the AEL system. These parame-ters are usually difficult to measure directly and may even change with time. To accurately evaluate the flexibility of an AEL system in online operation, this paper presents a Bayesian Inference-based Markov Chain Monte Carlo (MCMC) method to estimate these parameters. Meanwhile, posterior joint probability distribu-tions of the estimated parameters are obtained as a byproduct, which provides valuable physical insight into the AEL systems. Experiments on a 25 kW electrolyzer validate the proposed pa-rameter estimation method.

Citations (3)

Summary

We haven't generated a summary for this paper yet.