Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compression of user generated content using denoised references (2203.03553v2)

Published 7 Mar 2022 in eess.IV and cs.MM

Abstract: Video shared over the internet is commonly referred to as user generated content (UGC). UGC video may have low quality due to various factors including previous compression. UGC video is uploaded by users, and then it is re-encoded to be made available at various levels of quality. In a traditional video coding pipeline the encoder parameters are optimized to minimize a rate-distortion criterion, but when the input signal has low quality, this results in sub-optimal coding parameters optimized to preserve undesirable artifacts. In this paper we formulate the UGC compression problem as that of compression of a noisy/corrupted source. The noisy source coding theorem reveals that an optimal UGC compression system is comprised of optimal denoising of the UGC signal, followed by compression of the denoised signal. Since optimal denoising is unattainable and users may be against modification of their content, we propose encoding the UGC signal, and using denoised references only to compute distortion, so the encoding process can be guided towards perceptually better solutions. We demonstrate the effectiveness of the proposed strategy for JPEG compression of UGC images and videos.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com