Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Segmentation in Art Paintings (2203.03238v1)

Published 7 Mar 2022 in cs.CV, cs.GR, and cs.LG

Abstract: Semantic segmentation is a difficult task even when trained in a supervised manner on photographs. In this paper, we tackle the problem of semantic segmentation of artistic paintings, an even more challenging task because of a much larger diversity in colors, textures, and shapes and because there are no ground truth annotations available for segmentation. We propose an unsupervised method for semantic segmentation of paintings using domain adaptation. Our approach creates a training set of pseudo-paintings in specific artistic styles by using style-transfer on the PASCAL VOC 2012 dataset, and then applies domain confusion between PASCAL VOC 2012 and real paintings. These two steps build on a new dataset we gathered called DRAM (Diverse Realism in Art Movements) composed of figurative art paintings from four movements, which are highly diverse in pattern, color, and geometry. To segment new paintings, we present a composite multi-domain adaptation method that trains on each sub-domain separately and composes their solutions during inference time. Our method provides better segmentation results not only on the specific artistic movements of DRAM, but also on other, unseen ones. We compare our approach to alternative methods and show applications of semantic segmentation in art paintings. The code and models for our approach are publicly available at: https://github.com/Nadavc220/SemanticSegmentationInArtPaintings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Nadav Cohen (45 papers)
  2. Yael Newman (1 paper)
  3. Ariel Shamir (47 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com