Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Factor Graph-Based Planning as Inference for Autonomous Vehicle Racing (2203.03224v5)

Published 7 Mar 2022 in cs.RO

Abstract: Factor graph, as a bipartite graphical model, offers a structured representation by revealing local connections among graph nodes. This study explores the utilization of factor graphs in modeling the autonomous racecar planning problem, presenting an alternate perspective to the traditional optimization-based formulation. We model the planning problem as a probabilistic inference over a factor graph, with factor nodes capturing the joint distribution of motion objectives. By leveraging the duality between optimization and inference, a fast solution to the maximum a posteriori estimation of the factor graph is obtained via least-squares optimization. The localized design thinking inherent in this formulation ensures that motion objectives depend on a small subset of variables. We exploit the locality feature of the factor graph structure to integrate the minimum curvature path and local planning computations into a unified algorithm. This diverges from the conventional separation of global and local planning modules, where curvature minimization occurs at the global level. The evaluation of the proposed framework demonstrated superior performance for cumulative curvature and average speed across the racetrack. Furthermore, the results highlight the computational efficiency of our approach. While acknowledging the structural design advantages and computational efficiency of the proposed methodology, we also address its limitations and outline potential directions for future research.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. J. Betz, H. Zheng, A. Liniger, U. Rosolia, P. Karle, M. Behl, V. Krovi, and R. Mangharam, “Autonomous vehicles on the edge: A survey on autonomous vehicle racing,” IEEE Open Journal of Intelligent Transportation Systems, vol. 3, pp. 458–488, 2022.
  2. A. Heilmeier, A. Wischnewski, L. Hermansdorfer, J. Betz, M. Lienkamp, and B. Lohmann, “Minimum curvature trajectory planning and control for an autonomous race car,” Vehicle System Dynamics, vol. 58, no. 10, pp. 1497–1527, 2020.
  3. A. Liniger, A. Domahidi, and M. Morari, “Optimization-based autonomous racing of 1:43 scale rc cars,” Optimal Control Applications and Methods, vol. 36, no. 5, pp. 628–647, 2015.
  4. M. Toussaint, “Robot trajectory optimization using approximate inference,” in Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009, ser. ACM International Conference Proceeding Series, A. P. Danyluk, L. Bottou, and M. L. Littman, Eds., vol. 382.   ACM, 2009, pp. 1049–1056.
  5. M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-time Gaussian process motion planning via probabilistic inference,” Int. J. Robotics Res., vol. 37, no. 11, pp. 1319–1340, 2018.
  6. H. Attias, “Planning by probabilistic inference,” in Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, AISTATS 2003, Key West, Florida, USA, January 3-6, 2003, C. M. Bishop and B. J. Frey, Eds.   Society for Artificial Intelligence and Statistics, 2003.
  7. M. Toussaint and C. Goerick, “A bayesian view on motor control and planning,” in From Motor Learning to Interaction Learning in Robots, ser. Studies in Computational Intelligence, O. Sigaud and J. Peters, Eds.   Springer, 2010, vol. 264, pp. 227–252.
  8. F. Dellaert and M. Kaess, “Square root SAM: simultaneous localization and mapping via square root information smoothing,” Int. J. Robotics Res., vol. 25, no. 12, pp. 1181–1203, 2006.
  9. T. Herrmann, F. Passigato, J. Betz, and M. Lienkamp, “Minimum race-time planning-strategy for an autonomous electric racecar,” in 23rd IEEE International Conference on Intelligent Transportation Systems, ITSC 2020, Rhodes, Greece, September 20-23, 2020.   IEEE, 2020, pp. 1–6.
  10. T. Herrmann, F. Christ, J. Betz, and M. Lienkamp, “Energy management strategy for an autonomous electric racecar using optimal control,” in 2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019, Auckland, New Zealand, October 27-30, 2019.   IEEE, 2019, pp. 720–725. [Online]. Available: https://doi.org/10.1109/ITSC.2019.8917154
  11. F. Braghin, F. Cheli, S. Melzi, and E. Sabbioni, “Race driver model,” Computers & Structures, vol. 86, no. 13, pp. 1503–1516, 2008.
  12. N. R. Kapania, J. Subosits, and J. Christian Gerdes, “A Sequential Two-Step Algorithm for Fast Generation of Vehicle Racing Trajectories,” Journal of Dynamic Systems, Measurement, and Control, vol. 138, no. 9, 06 2016.
  13. J. R. Anderson, B. Ayalew, and T. Weiskircher, “Modeling a professional driver in ultra-high performance maneuvers with a hybrid cost MPC,” in 2016 American Control Conference, ACC 2016, Boston, MA, USA, July 6-8, 2016.   IEEE, 2016, pp. 1981–1986.
  14. G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Aggressive driving with model predictive path integral control,” in 2016 IEEE International Conference on Robotics and Automation, ICRA 2016, Stockholm, Sweden, May 16-21, 2016, D. Kragic, A. Bicchi, and A. D. Luca, Eds.   IEEE, 2016, pp. 1433–1440.
  15. J. Funke, M. Brown, S. M. Erlien, and J. C. Gerdes, “Collision avoidance and stabilization for autonomous vehicles in emergency scenarios,” IEEE Trans. Control. Syst. Technol., vol. 25, no. 4, pp. 1204–1216, 2017.
  16. D. Kalaria, P. Maheshwari, A. Jha, A. K. Issar, D. Chakravarty, S. Anwar, and A. Towar, “Local NMPC on global optimised path for autonomous racing,” CoRR, vol. abs/2109.07105, 2021. [Online]. Available: https://arxiv.org/abs/2109.07105
  17. T. Brüdigam, A. Capone, S. Hirche, D. Wollherr, and M. Leibold, “Gaussian process-based stochastic model predictive control for overtaking in autonomous racing,” CoRR, vol. abs/2105.12236, 2021. [Online]. Available: https://arxiv.org/abs/2105.12236
  18. B. Bazzana, T. Guadagnino, and G. Grisetti, “Handling constrained optimization in factor graphs for autonomous navigation,” IEEE Robotics Autom. Lett., vol. 8, no. 1, pp. 432–439, 2023.
  19. M. O’Kelly, H. Zheng, A. Jain, J. Auckley, K. Luong, and R. Mangharam, “TUNERCAR: A superoptimization toolchain for autonomous racing,” in 2020 IEEE International Conference on Robotics and Automation, ICRA 2020, Paris, France, May 31 - August 31, 2020.   IEEE, 2020, pp. 5356–5362.
  20. D. Kloeser, T. Schoels, T. Sartor, A. Zanelli, G. Prison, and M. Diehl, “Nmpc for racing using a singularity-free path-parametric model with obstacle avoidance,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 14 324–14 329, 2020, 21st IFAC World Congress.
  21. J. Kabzan, M. de la Iglesia Valls, V. J. F. Reijgwart, H. F. C. Hendrikx, C. Ehmke, M. Prajapat, A. Bühler, N. B. Gosala, M. Gupta, R. Sivanesan, A. Dhall, E. Chisari, N. Karnchanachari, S. Brits, M. Dangel, I. Sa, R. Dubé, A. Gawel, M. Pfeiffer, A. Liniger, J. Lygeros, and R. Siegwart, “AMZ driverless: The full autonomous racing system,” J. Field Robotics, vol. 37, no. 7, pp. 1267–1294, 2020.
  22. E. Bakker, L. Nyborg, and H. B. Pacejka, “Tyre modelling for use in vehicle dynamics studies,” SAE Transactions, pp. 190–204, 1987.
  23. G. Frison and M. Diehl, “HPIPM: a high-performance quadratic programming framework for model predictive control,” CoRR, vol. abs/2003.02547, 2020. [Online]. Available: https://arxiv.org/abs/2003.02547
  24. S. Bari, V. Gabler, and D. Wollherr, “Probabilistic inference-based robot motion planning via gaussian belief propagation,” IEEE Robotics Autom. Lett., vol. 8, no. 8, pp. 5156–5163, 2023.
  25. S. W. Chen, K. Saulnier, N. Atanasov, D. D. Lee, V. Kumar, G. J. Pappas, and M. Morari, “Approximating explicit model predictive control using constrained neural networks,” in 2018 Annual American Control Conference, ACC 2018, Milwaukee, WI, USA, June 27-29, 2018.   IEEE, 2018, pp. 1520–1527.
  26. B. Karg and S. Lucia, “Efficient representation and approximation of model predictive control laws via deep learning,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3866–3878, 2020.
  27. P. Sodhi, S. Choudhury, J. G. Mangelson, and M. Kaess, “ICS: incremental constrained smoothing for state estimation,” in 2020 IEEE International Conference on Robotics and Automation, ICRA 2020, Paris, France, May 31 - August 31, 2020.   IEEE, 2020, pp. 279–285.
  28. J. S. Yedidia, Y. Wang, and S. C. Draper, “Divide and concur and difference-map BP decoders for LDPC codes,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 786–802, 2011.
  29. M. Bhardwaj, B. Boots, and M. Mukadam, “Differentiable gaussian process motion planning,” in 2020 IEEE International Conference on Robotics and Automation, ICRA 2020, Paris, France, May 31 - August 31, 2020.   IEEE, 2020, pp. 10 598–10 604.

Summary

We haven't generated a summary for this paper yet.