Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Object Inertial Parameter Identification for Collaborative Robots (2203.00830v3)

Published 2 Mar 2022 in cs.RO

Abstract: Collaborative robots (cobots) are machines designed to work safely alongside people in human-centric environments. Providing cobots with the ability to quickly infer the inertial parameters of manipulated objects will improve their flexibility and enable greater usage in manufacturing and other areas. To ensure safety, cobots are subject to kinematic limits that result in low signal-to-noise ratios (SNR) for velocity, acceleration, and force-torque data. This renders existing inertial parameter identification algorithms prohibitively slow and inaccurate. Motivated by the desire for faster model acquisition, we investigate the use of an approximation of rigid body dynamics to improve the SNR. Additionally, we introduce a mass discretization method that can make use of shape information to quickly identify plausible inertial parameters for a manipulated object. We present extensive simulation studies and real-world experiments demonstrating that our approach complements existing inertial parameter identification methods by specifically targeting the typical cobot operating regime.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. M. T. Mason and K. M. Lynch, “Dynamic manipulation,” in Proc. 1993 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol. 1, pp. 152–159, 1993.
  2. J. Lukos, C. Ansuini, and M. Santello, “Choice of contact points during multidigit grasping: Effect of predictability of object center of mass location,” J. Neuroscience, vol. 27, no. 14, pp. 3894–3903, 2007.
  3. J. B. Hamrick, P. W. Battaglia, T. L. Griffiths, and J. B. Tenenbaum, “Inferring mass in complex scenes by mental simulation,” Cognition, vol. 157, pp. 61–76, 2016.
  4. C. C. Pagano and M. Turvey, “Eigenvectors of the inertia tensor and perceiving the orientation of a hand-held object by dynamic touch,” Perception & Psychophysics, vol. 52, no. 6, pp. 617–624, 1992.
  5. M. T. Mason, “Toward robotic manipulation,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, pp. 1–28, 2018.
  6. G. Golluccio, G. Gillini, A. Marino, and G. Antonelli, “Robot dynamics identification: A reproducible comparison with experiments on the kinova Jaco2,” IEEE Robotics & Automation Magazine, 2020.
  7. N. Mavrakis and R. Stolkin, “Estimation and exploitation of objects’ inertial parameters in robotic grasping and manipulation: A survey,” Robotics and Autonomous Systems, vol. 124, p. 103374, 2020.
  8. C. G. Atkeson, C. H. An, and J. M. Hollerbach, “Estimation of inertial parameters of manipulator loads and links,” The Int. J. Robotics Research, vol. 5, no. 3, pp. 101–119, 1986.
  9. D. Kubus, T. Kroger, and F. M. Wahl, “On-line estimation of inertial parameters using a recursive total least-squares approach,” in Proc. 2008 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3845–3852, 2008.
  10. S. Farsoni, C. T. Landi, F. Ferraguti, C. Secchi, and M. Bonfè, “Real-time identification of robot payload using a multirate quaternion-based Kalman filter and recursive total least-squares,” in Proc. 2018 IEEE Int. Conf. on Robotics and Automation, pp. 2103–2109, 2018.
  11. C. D. Sousa and R. Cortesao, “Physical feasibility of robot base inertial parameter identification: A linear matrix inequality approach,” The Int. J. Robotics Research, vol. 33, no. 6, pp. 931–944, 2014.
  12. S. Traversaro, S. Brossette, A. Escande, and F. Nori, “Identification of fully physical consistent inertial parameters using optimization on manifolds,” in Proc. 2016 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 5446–5451, 2016.
  13. P. M. Wensing, S. Kim, and J.-J. E. Slotine, “Linear matrix inequalities for physically consistent inertial parameter identification: A statistical perspective on the mass distribution,” IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 60–67, 2017.
  14. T. Lee, P. M. Wensing, and F. C. Park, “Geometric robot dynamic identification: A convex programming approach,” IEEE Trans. Robotics, vol. 36, no. 2, pp. 348–365, 2019.
  15. W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-resolution robot tactile sensors for estimating geometry and force,” Sensors, vol. 17, no. 12, p. 2762, 2017.
  16. C. Wang, S. Wang, B. Romero, F. Veiga, and E. Adelson, “Swingbot: Learning physical features from in-hand tactile exploration for dynamic swing-up manipulation,” in Proc. 2020 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, (Las Vegas, USA), Oct. 2020.
  17. A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “Tossingbot: Learning to throw arbitrary objects with residual physics,” Proc. Robotics: Science and Systems (RSS), 2019.
  18. K. Ayusawa and Y. Nakamura, “Identification of standard inertial parameters for large-DoF robots considering physical consistency,” in Proc. 2010 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 6194–6201, IEEE, 2010.
  19. C. Song and A. Boularias, “A probabilistic model for planar sliding of objects with unknown material properties,” in Proc. 2020 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Oct. 2020.
  20. B. Sundaralingam and T. Hermans, “In-hand object-dynamics inference using tactile fingertips,” IEEE Trans. Robotics, vol. 37, no. 4, pp. 1115–1126, 2021.
  21. N. Mavrakis, R. Stolkin, L. Baronti, M. Kopicki, M. Castellani, and others, “Analysis of the inertia and dynamics of grasped objects, for choosing optimal grasps to enable torque-efficient post-grasp manipulations,” in Proc. 2016 IEEE/RAS 16th Int. Conf. on Humanoid Robots, pp. 171–178, 2016.
  22. Cambridge University Press, 2017.
  23. T. Kroger, D. Kubus, and F. M. Wahl, “12D force and acceleration sensing: A helpful experience report on sensor characteristics,” in Proc. 2008 IEEE Int. Conf. on Robotics and Automation, pp. 3455–3462, 2008.
  24. A. Saudabayev, Z. Rysbek, R. Khassenova, and H. A. Varol, “Human grasping database for activities of daily living with depth, color and kinematic data streams,” Scientific data, vol. 5, no. 1, pp. 1–13, 2018.
  25. Y. Huang and Y. Sun, “A dataset of daily interactive manipulation,” The Int. J. Robotics Research, vol. 38, no. 8, pp. 879–886, 2019.
  26. “Robots and robotic devices - Safety requirements for industrial robots - Part 1: Robots,” Tech. Rep. ISO 10218-1:2011, ISO, Geneva (2011).
  27. “Robots and robotic devices - Collaborative robots,” Tech. Rep. ISO/TS 15066:2016, ISO, Geneva (2016).
  28. B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar, “Benchmarking in manipulation research: Using the Yale-CMU-Berkeley object and model set,” IEEE Robotics & Automation Magazine, vol. 22, no. 3, pp. 36–52, 2015.
  29. Cambridge University Press, 2004.
  30. E. D. Andersen and K. D. Andersen, “The mosek interior point optimizer for linear programming: An implementation of the homogeneous algorithm,” in High performance optimization, pp. 197–232, 2000.
  31. M. Gautier and W. Khalil, “Exciting trajectories for the identification of base inertial parameters of robots,” The Int. J. Robotics Research, vol. 11, no. 4, pp. 362–375, 1992.
  32. S. Farsoni, C. T. Landi, F. Ferraguti, C. Secchi, and M. Bonfe, “Compensation of load dynamics for admittance controlled interactive industrial robots using a quaternion-based kalman filter,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 672–679, 2017.
Citations (7)

Summary

We haven't generated a summary for this paper yet.