Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic Normality of Log Likelihood Ratio and Fundamental Limit of the Weak Detection for Spiked Wigner Matrices (2203.00821v4)

Published 2 Mar 2022 in math.ST, math.PR, stat.ML, and stat.TH

Abstract: We consider the problem of detecting the presence of a signal in a rank-one spiked Wigner model. For general non-Gaussian noise, assuming that the signal is drawn from the Rademacher prior, we prove that the log likelihood ratio (LR) of the spiked model against the null model converges to a Gaussian when the signal-to-noise ratio is below a certain threshold. The threshold is optimal in the sense that the reliable detection is possible by a transformed principal component analysis (PCA) above it. From the mean and the variance of the limiting Gaussian for the log-LR, we compute the limit of the sum of the Type-I error and the Type-II error of the likelihood ratio test. We also prove similar results for a rank-one spiked IID model where the noise is asymmetric but the signal is symmetric.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com